High resolution fingerprint sensing – next generation in biometric identification

Stéphane Revelin Safran Identity & Security

EU Project No. 611019

Outline

 Safran Identity & Security presentation
 Introduction to fingerprint biometrics
 The fingerprint recognition market and PIEZOMAT technology

Introduction to fingerprint biometrics

TWO COMPLEMENTARY CONCEPTS

IDENTIFICATION Find an individual in a database 1 to Many AUTHENTICATION Verify the stated identity of an individual 1 to 1

BIOMETRICS TECHNOLOGY

Looking for immutable, universal, and unique characteristics

GLOBAL PROCESS

Source: ISO/IEC JTC 1/SC 37 N 1991

FINGERPRINT RECOGNITION: WHAT IS PROCESSED ?

3 levels of information

- Level 1: ridge flow => classification
 - . Orientation, pattern, focal areas (core, delta), ...
- Level 2: ridge path => matching
 - . Features / absence of features
 - . Ridge ending, bifurcation, dot, ...
 - . Location, type, direction, relationship
- Level 3: ridge features => verification / advanced matching
 - . Pores, ridges/edges shapes/with, ...

LEVEL 1 (GLOBAL): RIDGES DIRECTION FLOW

- Ridge Flow Matrix (RFM)
- The ridge flow matrix represents at each point of the image the general direction of the fingerprint's ridge flow

LEVEL 1 (GLOBAL): RIDGES DIRECTION FLOW

Used for classification & filtering Reduce the number of finger comparisons actually performed

LEVEL 1 (GLOBAL): CORES AND DELTAS

LEVEL 2 (LOCAL): EVENT ON A RIDGE = MINUTIAE

LEVEL 2 (LOCAL): EVENT ON A RIDGE = MINUTIAE (2/2)

- Minutiae are : location + direction
- → Used for matching → very important
- About 40 60 minutiae in average per finger for a fingerprint sensor
 - Up to 100 minutiae per finger depending on the sensor

LEVEL 3: PARTICULARITIES OF THE RIDGES

- Pores, ridge shape, incipient ridges, scars, creases, deformations, …
- □ Anything which is not level 1 nor level 2...
- Need high resolution (>= 1000 dpi)

MAIN FEATURES AUTOMATICALLY DETECTED ON FINGERPRINTS

Fingerprint matching: minutiae comparison

- Extract minutiae from fingerprint images to create the fingerprint template
- Compare minutiae template against template(s) in the database
- Compute a score and take a decision

EXAMPLE OF MATCHING (1/3)

EXAMPLE OF MATCHING (2/3)

DECISION

Compute a score
 Depends on application
 Example : law enforcement

 The system proposes a candidates list
 Then the experts verify it

Example : border control

Automatic decision with a threshold on matching score

The fingerprint recognition market and PIEZOMAT technology

PANORAMA OF BIOMETRICS APPLICATIONS

Corporate

ntro

Civil ID

Financial Transaction

- Consumer ID management
- ecommerce
- Home banking
- Payment transaction

Public Safety

- ID document verification
- Identification of people in the crowd

Physical access Logical access

Acces

il Regist

Driving licence

Social & financial inclusion

Health care

Border Control Passport verification

Citizen authentication

Criminal JusticeFast Identification of

suspects

- Evidence capture
- Prisoners transfer

Market context

Traditional market (government oriented)

- Criminal justice
- Border control
- Critical infrastructure protection
- Identity document and digital identity
- Mobile market Newly identified within project' scope
 - e-Banking
 - e-Health
 - e-Government
 - e-Commerce

Traditional market

- Strong growth expected in next years
- High security expectations and requirements
- Projected revenues up to 2020 and market share by biometric modality and applications:

Source: Global Industry Analysts, Inc

Mobile market

- Emerging and fast growing
- Smartphone manufacturer increasingly integrate fingerprint sensors (swipe, touch or touchscreen)
- Small surface: new comparison algorithms (no minutiae based)!
- Projection for implementation of fingerprint sensors in mobile

Source: IHS

Mobile market

Source: IHS

FINGERPRINT TECHNOLOGY

- A large number of fingerprint
 sensing techniques already exist or are emerging
 - Fingerprint sensor
 - The sensing technology impacts the image quality
 - High resolution (500dpi) needed with a good sharpness and contrast

Sensor Technology	Sensor Embedded Technologies			Sensor Type	Maturity
	Sig. Generation	Sig. Capture	Sig. Conversion		
Optical	TIR	Camera		Touch	High
	Direct View	Camera		Contactless	High
	Direct view	Camera		Touch	High
	Electroluminescent Film	Camera		Touch	High
	Electroluminescent Film	TFT	Chip off sensor	Touch	Medium
	Direct view + Struct. light	Camera		On The Fly	Medium
	OCT	Camera		Touch	Very Low
Electrical field	Silicon only			Touch	High
	Flex		Chip off sensor	Touch	Low
	Silicon only			Swipe	High
Ultrasonic	Film Piezzo	TFT	Chip off sensor	Touch	Medium
Capacitive	Silicon only			Touch	High
	Film PVBF	TFT	Chip off sensor	Touch	Medium
	Silicon only			Swipe	High
Pressure	Polyurethane acrylate Film Ch		Chip off sensor	Touch	Low
PyroElectric	Silicon only			Swipe	High

FINGERPRINT SENSING CHALLENGES AND FUTURE

- Biometric sensors technical challenges
 - Security: Detection of fake / dead sample
 - Performance: Capacity to collect high quality biometric sample in any place, any conditions and from anybody
 - Usability: Ergonomic solution minimizing the number of retries
 - Price: Design of high quality and cost effective solution to address larger market opportunities
- Technology enablers
 - Increased processing power on embedded platform (smart camera, etc.)
 - Next generation camera sensors: High speed, light field, high resolution etc.
 - Progress from the consumer electronics
 - Etc.

Safran technology interest

- Monitoring of new/emerging technologies
- New products
- Market expertise to anticipate future customer needs:
 - Mobility
 - Embedded sensors in mobile devices (Smartphone, Tablet...)
 - Trust
 - Resistance to spoofing

PIEZOMAT Technology advantages

Very high resolution (>1000 dpi)

- High quality image
- Very precise description of fingerprint ridge structure

- Enhanced fingerprint representation
 - Additional features (pore): standardisation opportunities within the ISO SC 37 Working group (ISO/IEC JTC 1/SC 37 Biometrics) to include new features in the template for fingerprint representation
 - Anti-spoofing capabilities
- **3D** capabilities for ridge structure representation
 - Could also be used as anti-spoofing mechanism
- Form factor
 - Flat form factor, even for large surface

Position for PIEZOMAT sensor

- DEMO sensor size: 0.250 x 0.625 mm (limited by bounding, cf. WP6)
- Strongly depends on the capability of achieving a sensor of sufficient surface at a reasonable cost
- Production cost could be dramatically reduced with the mass production effect
- Mobile market: new matching algorithms (no minutiae based) would benefit from very high resolution

Feature	Government/High End Security Specifications	Mobile market Specifications	PiezoMAT DEMO objective
Minimum size (mm x mm)	16,5 x 12,7	4 x 4	<mark><1 x 1</mark>
Minimum resolution	500dpi	No standard but very high resolution is an advantage (1000 dpi min).	1000dpi

Steps to go to mobile market

- Mobile market perspectives
 - Target: 4x4 mm 1000dpi
 - Development of a specific integrated CMOS
 - Upscale of the DEMO chip Nanowire array
 - CMOS to NW seed layer technology development
 - Interfaces adaptation
 - Manufacturing and assembly of the breadboard
 - Test setup and procedures adaptation
 - Breadboard validation and tests

Steps to go to mobile market

Steps to go to traditional market

Security and government applications perspectives

- □ Target: 20x20 mm 1000dpi
- Development of a specific integrated CMOS
- Upscale of the DEMO chip Nanowire array
- □ CMOS to NW seed layer technology development
- Interfaces adaptation
- Manufacturing and assembly of the breadboard
- Test setup and procedures adaptation
- Breadboard validation and tests

Possible business plan

Security and government market

- □ The simplest to address (known customers and ecosystem...)
- The hardest to reach in the short term from the technological point of view (sensor surface size/cost)
- High expectation regarding image quality and accuracy

Mobile market

- Seems the most appropriate in the short term
- Dependent on mobile phone manufacturer willingness
- Sensor encapsulation possibilities still to be confirmed

Thank you for your attention

FINGERPRINT SENSORS

Single fingerprint scanner (MorphoSmart)

- Optical: TIR, dark field illumination
- Contact sensor
- Indoor
- 500dpi

- Direct view, Structured light
- Contactless sensor
- Indoor
- 500dpi
- Depth of field: 2cm

