The PiezoMAT project

Antoine Viana, CEA-Leti (Fr)

EUROSENSORS 2016

September 7th, 2016, Budapest

EU Project No. 611019

WHAT IS THE CEA ?

- 10 research centers
- 16 110 technicians engineers, researchers and staff
- 51 joint research units (UMR)
- Research Activities :
 - defense
 - energy (nuclear & sustainable energies)
 - technologies
 - fundamental research

Atlas detector seismic design of the structure. © CEA

WHAT IS THE CEA ?

CEA IN GRENOBLE

50UV

One of the CEA LETI building

PiezoMat now...

Objective of PiezoMAT

Very-high spatial resolution fingerprint sensor

- □ Target : level 3 of fingerprint details
 - Level 1 : ridge flows and singular points
 - Level 2 : minutiae points (ridge ending, bifurcation)
 - □ <u>Target : Level 3 : pores, ridge edges</u>

Objective of PIEZOMAT (2)

- Matrix of individually interconnected vertical PZ NWs
 - Encapsulated in a polymer
- 1000 dpi resolution
 - For maximal on-chip integration density

Technological challenges (1/5)

Processing chips with NWs electrical contacts deposition

OPTION 1 (direct metal deposition)

□ NW / metal interfaces

□ High risk, not scalable

Maximum signal collection **OPTION 2 (bending)**

4 contacts in high potential area
 Technologically challenging
 Complex signal collection / processing from 2D measurement

OPTION 3 (compression)

□ 2 top-bottom contacts

Technologically safer

Complex signal collection /

processing from 1D

measurement

Technological challenges (2/5)

Growing localized NW on the chips (options 2 and 3)

PLD growth challenges

- Reduced thermal budget (<400°C)</p>
- □ Controlled **NW morphologies** (radii 400nm to 1µm)
- □ **localized** growth of thick NWs
- Controlled seed mechanisms on non-metal or metal layer (options 2,3)
 compatible with chip processing

WCG* growth challenges

□ Crystal defect (unintentional ntype dopants) reduction by in-situ doping or post-processing

□ localized growth of thin NWs

 Controlled seed mechanisms on non-metal or metal layer (options 2,3)
 compatible with chip processing

* Wet Chemical Growth, a.k.a ACG (Aqueous Chemical Growth)

Technological challenges (3/5)

Encapsulating NWs into a polymer

□ Transfer force from 3D deformation field to NWs

- Without altering sensing capability
- Compatible with a suitable fingerprint interface

Be industry / process compatible

- Deposition process development
- Polymer treatment

❑ Will need structural / chemical characterisations

- Chemical, Electrica
 Then Piezoelectric
 - Chemical, Electrical, Mechanical characterization of the polymer
 - Then Piezoelectric characterisation of encapsulated NW(s)

Technological challenges (4/5)

Building a multi-physics model for the NWs

Need for linear and non-linear models

- Single contacted then encapsulated NW
- Multiple contacted then encapsulated NWs

Need to link models of different origins

- □ First principles calculations of charge transport at NW/metal interface
- □ Then implementation into a global model

□ Need to handle static & dynamic simulations

- □ Static : static mechanical load applied on the NW top section
- Dynamic : harmonic and transient responses of NW subjected to fluctuating loads

Technological challenges (5/5)

Characterizing and testing

Bend / compress single / multiple NWs

- Single NW AFM-based characterisations
- Real-time read-out by 8-bit digitalising

A matrix of multiple NWs

- 10 x 10 NW matrix (PoC chip) characterisation by force-calibrated multi-axis nano-positioner
- Analogue read-out lines, multi-channel switch mainframe

Perform a partial demonstration phase with DEMO chip

- Evaluate the Modular Transfer Function (MTF) on 3D template
- □ Check the ability to transfer multiple "grey levels"
- Evaluate the impact of the distortion induced by slight finger rotations
- □ Test pure biometrics function (False Rejection / Acceptance Ratios)

Consortium to reach objective

No	Name	Short name	Country	Project entry month ¹⁰	Project exit month
1	COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES	CEA	France	1	36
2	FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V	Fraunhofer	Germany	1	36
3	RESEARCH CENTRE FOR NATURAL SCIENCES, HUNGARIAN ACADEMY OF SCIENCES	MTA	Hungary	1	36
4	UNIVERSITAET LEIPZIG	ULEI	Germany	1	36
5	KAUNO TECHNOLOGIJOS UNIVERSITETAS	KTU	Lithuania	1	36
6	SPECIFIC POLYMERS	SPECIFIC POLYMERS	France	1	36
7	UNIVERSITY COLLEGE CORK, NATIONAL UNIVERSITY OF IRELAND, CORK	Tyndall-UCC	Ireland	1	36
8	SAFRAN	SAFRAN	France	1	36

Role distribution

Device specifications and design

- Specification definition Safran Identity & Security + all
- Stack / materials / layouts CEA, ULEI, MTA EK, S. Polymer

Simulations

- First principle calculations
 TYNDALL (Ireland)
- Multi-physics model KTU (Lithuania)

Processing

Option 2 and 3 chip processing CEA-Leti (France)

NW growth

- Option 1 TYNDALL (Ireland)
- Pulse Laser Deposition ULEI (Germany)
- Aqueous Chemical Growth MTA EK (Hungary)
- Polymer encapsulation
 SPECIFIC POLYMERS (France)
- Characterizations and tests
 - Up to PoC PZ characterizations FRAUNHOFER (Germany)
 - DEMO tests Safran Identity & Security (France)

Thank you !

Questions ?

