PiezoMAT Workshop

Piezo-electro-mechanical characterization of NW sensor structures

V. Lebedev, Fraunhofer IAF

EUROSENSORS 2016

September 7th, 2016, Budapest

EU Project No. 611019

The Fraunhofer-Gesellschaft

- Europe's largest application-oriented research organization
- 67 Fraunhofer institutes and research units
- More than 23,000 staff, mostly scientists and engineers
- € 2 billion annual research budget (approx. 70 % industry contracts and public funding, 30 % base funding)
- International affiliations through subsidiaries in Europe, USA, Asia

Fraunhofer IAF

location Freiburg foundation 1957 290 staff total budget 33.2 Mio € investments 7.7 Mio € electronic and optical research components based on III-V topics semiconductors and synthetic diamond ~170 partners in industry and cooperation research

Fraunhofer Institute for Applied Solid State Physics

Business units

Electronic integrated circuits and modules for high frequencies

Power Electronics

High performance transistors and circuits based on gallium nitride

Photodetectors

High resolution detectors in the infrared and UV range

Semiconductor Lasers

Infrared semiconductor lasers, laser systems, LEDs and diode lasers

Semiconductor Sensors

Micromechanics and sensors based on III-V semiconductors and diamond

Semiconductor Sensors

Focus of Department "Semiconductor Sensors":

prospective piezoelectric & acoustic materials, e.g. AI(Sc)N, ZnO, synthetic diamond ...

Full chain of development & fabrication steps:

NEMS/MEMS technologies

PiezoMAT – 12th PTC/GA

Fraunhofer IAF: characterization

Main growth techniques

- MBE & MOCVD of III-V
- Plasma CVD of Diamond
- ALD + RTA of Oxides
- Sputter Deposition of AI(Sc)N

Material characterization in house

- Scanning Probe Piezo-AFM
- SEM/AFM/PFM/Kelvin-Probe
- XRD & XRR, SIMS
- Confocal µ-Raman, S-Ellipsometry
- VF-, VT-Hall (up to 2T/800K)
- Indentation by nano-positioning

Processing

- Front- & Back-End
- Metallization/Passivation
- UV (400 nm) & e.beam lithography
- ICP/ECR dry etch of III-N & Si & Me
- DRIE (Bosch) of Si

MEMS characterization

- White light interferometry (static)
- Laser Doppler Vibrometry
- S-Parameter Analyses (up to 400 GHz)
- Measurements from vacuum to liquids
- Dedicated Bio-& Gas-Sensor Labs
- Powered by COMSOL (FEM) simulations

Example: laser vibrometry

Budapest, 8th September 2016

PiezoMAT - 12th PTC/GA

PiezoMAT fingerprint sensor

PiezoMAT challenge:

fingerprint main features >100 µm

for small features 1-10 µm the resolution > 1000 dpi is essential!

PiezoMAT approach:

piezoelectric ZnO NWs directly grown on patterned electronic circuits

PiezoMAT aim:

8-bit read-out of NW electric response (256 grey-levels) with detection of level 3 minutiae of fingerprints (pores, ridge edges, ...)

PiezoMAT - 12th PTC/GA

PiezoMAT PoC2 & PoC3 chips

PiezoMAT proof-of-concept sensors to be characterized at Fraunhofer

PiezoMAT – 12th PTC/GA

PoC2 & PoC3 fabrication

- 8×8 PoC2A fabrication & main characterization by MTA EK MFA
- 10×10 PoC3 by CEA/MTA EK MFA; characterization by Fraunhofer

PoC3 encapuslation

 PoC3 encapsulated by polymer layer at SP (SEM at MFA)

 Encapsulated PoC3: preparation for top-electrode processing

PoC3 top-electrode

Ti/Au top-electrode layer evaporated onto PoC3 sensor

• Standard: 100 nm Au layer

New approach by Specific Polymers

"Ag+polymer"

Hybrid

PoC3 montage/bonding

- 100 channel low-noise PCB design
- automatic Au wedge-wedge wire bonding

• 10×10 PoC3: automatic wire bonding

10x10 PoC3 PCB

AFM based setup

- high acoustic & electrical insulation
- single-NW & array characterization

AFM-based analyses

• two main methodologies:

 a) force-response (AFM-FR, up to 1 μN);
b) piezoelectric coefficient (AFM-d₃₃) measurement configurations.

PiezoMAT - 12th PTC/GA

AFM-FR time analyses

Example of typical FR-measurement protocol (time-chart):
-> record of electromechanical NW response to different force magnitudes.

- Recording current (black) & z-position (blue) vs. time;
- Calculating force, dl/dt (red) & generated charge (orange);

AFM-FR: data treatment

- peak piezo-response of ZnO NW at 200 nN compressive force, recorded by potentiostat;
- total generated charge of ~ 50 fC is estimated by means of a time-domain analysis of the decay time constant.

AFM-d₃₃: piezo-coefficient

- lock-in technique for the low-noise conditions;
- measured cantilever sensitivity and reference piezo-response of AIN micro-pillars (d₃₃ = -5.8 pm/V);
- ZnO NW d₃₃ value of ~ 15 pC/N in a good agreement with the literature data
- high crystal quality ZnO NWs!

$$d_{33} = \frac{\text{signal} * \text{sensitivity} * \text{prop.factor}}{\text{input signal}} = \frac{220 \cdot 10^{-6} \text{ V} * 34.2 \cdot 10^{3} \frac{\text{pm}}{\text{V}}}{5 \text{ V}} * 10 = 15.1 \frac{\text{pm}}{\text{V}}$$

AFM-FR: sensitivity

AFM-FR is an extremely sensitive method

... even a week response dependence on the varying NW diameter can be detected ...

but limited to the force range < 1 μ N.

Macro-FR: PoC3

Macro-FR: PoC3

• Typical force-response protocol: with transition from "surface contact detection" to NW response regime

Macro-FR: PoC3 at FhG

PoC3: piezo-tronic?

 \Box <| Q_{px} |> > 10 pC is huge number!

□ good for the detection, but what is additional mechanisms?

ZnO is "piezo-tronic" material -> resistance is a function of applied force!

PoC3: piezo-tronic?

- additional confirmation of "piezo-tronic" behavior is an enhanced response of ZnO NW at applied bias
- modeling by PiezoMAT partners is in progress ...

Summary

Three main methodologies for the PiezoMAT sensor characterization:

- AFM-based force-response measurements up to 1 μ N;
- AFM-based vibration analyses: d₃₃ coefficient measurements;
- Macro-force probing up to 100 mN using nano-positioning;
- Sensitivity of AFM-based setup: ~1 fA (potentiostat) × 10 nN;
- Sensitivity of MACRO setup: ~ 100 fA (source-meter) \times 10 μ N;
- force-dependent multi-channel respon se has been detected on proof-of-concept PiezoMATchips;
- the decisive role of the <u>piezotronic effect</u> has been confirmed;

WP6: Summary

